欧美人在线观看_性欧美xxx极品另类_亚洲欧洲中文字幕_中文字幕欧美日韩在线_欧美黑人猛交_国产精品黄色影片导航在线观看_国产夫妻在线播放_深夜福利成人

復納科學儀器(上海)有限公司
技術文章
您現在所在位置:首頁 > 技術中心 > 粉末保形包覆 —— PALD 技術的基本實現方法

粉末保形包覆 —— PALD 技術的基本實現方法

 更新時間:2022-03-28 點擊量:6922

技術的變革需要創新精神,更依賴創新者之間的合作。Alan Weimer 與 Steve Geogre 兩位教授自本世紀初起的合作,造就了全新的粉末工程加工技術:PALD(粉末原子層沉積)。而由此衍生的兩家 ALD 技術公司 ALD Nanosolutions 以及 Forge Nano (二者在 2020 年完成合并)已經成為粉末 ALD 技術推行者,實現從克級到千噸級的粉末表面保形涂層加工。

 

1.png

 

關于 ALD 以及 PALD 技術

 

與傳統的表面改性不同,PALD 是真正可以實現原子級/分子層級控制精度的粉末涂層技術,并保持良好的共形性。原子層沉積技術是一種基于自限制性的化學半反應將被沉積物質以單原子膜的形式一層一層的鍍在物體表面的薄膜技術。與常規的化學氣相沉積不同,原子層沉積將完整的化學反應分解成多個半反應,從而實現單原子層級別的薄膜控制精度。由于基底表面存在類似羥基這樣的活性位點,因此前驅體可以形成單層的飽和化學吸附,從而實現自限制性反應。而在經過單個周期反應后,新的位點暴露出來,可以進行下一個周期的反應。而 ALD 反應的特點決定了:

 

1. 反應具有自限制性,因此每個周期理論上最多只有一層目標涂層形成
2. ALD 反應具有較好的繞鍍性,可以實現其他方法無法達到的保形,均勻的涂層
3. 厚度可控,通過控制反應的周期,從而實現原子層級的厚度控制

 

2.jpg

ALD 的原理:氧化鋁涂層的生長

 

PALD 誕生自工業經驗與學術精神的碰撞

 

20 世紀末,在美國的科羅拉多大學博爾德分校,剛剛從工業界轉回學術界的 Alan Weimer 開始重拾科學研究的樂趣。這位特立獨行的研究者在偶然聽到 Steve Geogre 教授關于原子層沉積技術的報告后,立馬投入到這一研究中。二人的合作產生了良好的化學反應,在短短幾年內,他們就申請了大量的相關zhuan利,其中就包括對大規模的粉末顆粒表面進行 ALD 包覆。當時,ALD 技術在半導體行業得到越來越多的重視,但沒有人相信可以實現大量粉末材料的 ALD 涂層沉積。很多質疑者的疑問在當時看起來無懈可擊:

 

1. 粉末材料巨大的比表面積,以及容易團聚的特點,ALD 方法如何實現充分的氣固接觸?
2. 與半導體行業不同,粉末材料用量巨大,如何實現批量的粉末 ALD 包覆處理?
3. ALD 反應的前驅體成本高昂,如何讓企業接受這樣的高成本方案?

 

Alan Weimer 這位特立獨行的研究者,顯然沒有把這些質疑放在心上,在陶氏化學多年的工作經驗讓他具備驗證工程化技術的能力。在本世紀初,工業界更偏向于提升粉末本身的性能,很少關注到表面改性。而學術界對于納米技術的研究剛剛興起,液相法靈活的特點更受歡迎,ALD 高昂的入門成本讓大多數研究者對其束之高閣。但經過二位教授多年的努力,PALD 技術已被科學界接受,并引起工業界的興趣。

 

3.png

Alan Weimer:我的興趣一直是嘗試并成為該領域的第一人

 

PALD 被用來做什么

 

早期,PALD 應用是保護 LED 熒光發光材料免遭水汽侵蝕從而失活,使用 ALD 涂層材料所可有效節約加工能源,只需要其他方法的 75% 到 80%,有顯著的成本效益。另一個應用主要是針對鋰離子電池的包覆改性,從而提升電池的循環使用壽命以及安全性。

 

PALD 的實現方式

 

Q:為什么半導體晶圓 ALD 不適合處理粉末樣品

 

最早的粉末 ALD 研究都是小批量的,部分研究者會采用半導體晶圓 ALD 設備處理少量的粉末。但受限于粉末的分散技術,只能停留在實驗室階段。在粉末表面進行的 ALD 反應比平面樣品更為復雜,由于粉末樣品巨大的表面積,使相同體積下的粉末材料需要更多的前驅體進行反應。如果把電子元件看作一張課桌,那么同樣體積的粉末的表面積幾乎可以等同于一個標準足球場。

 

4.jpg

粉末 ALD 需要覆蓋的面積遠遠高于平面器件

 

同時粉末易于團聚的特點也導致平面 ALD 方式前驅體擴散效率低下。因此對粉末進行 ALD 需要實現:

1. 反應腔的設計,可實現粉末攪拌功能
2. 前驅體輸送需要更高效的擴散以及單次大體積的加藥

 

5.jpg

平面 ALD 處理樣品會導致的問題

 

1. 流化床系統

 

Steve Geogre 教授從 2004 年起采用流化床以及旋轉床等方法結合的方式進行粉末的包覆處理。而 Alan Weimer 教授緊隨其后,采用更大批次處理的流化床系統進行粉末包覆的研究,并搭建了多種粉末 ALD 系統,Wank 等人是第一個在流化床包覆反應器中使用 ALD 包覆一次顆粒的人,在隨后 King 等人也提出發展出使用質譜儀 (M/S) 跟蹤 ALD 化學表面反應的進行的方案。

 

6.png

流化床 PALD 包覆系統

 

在流體作用下呈現流(態)化的固體粒子層稱為流化床。流化床方案是較為理想的一種分散方式,流化是將顆粒懸浮在移動的流體中,使其表現為類液體狀態的一種方法。隨流體速度的不同,床層可具有不同的流化特性。如流速 U 過低,則床層固定不動,流體僅從顆粒間空隙流過,壓降 Δp 隨流速 U 而增加。如流速增大到使壓降和單位橫截面上的床層重量相等,固體顆粒便開始浮動,床層呈現流動性,這種狀態稱為最小流化或起始流化。這時按空床橫截面計算的流速稱為起始流化速度或最小流化速度 Umf。流速再增大,床層將隨流速的增大而繼續膨脹,出現壓降穩定、流動性能良好的穩定操作區,稱為正常流化。如流速繼續增大,則床層湍動加劇,床面漸難辨認。當流速達到它對單個固體顆粒的曳力同顆粒的浮重相等時,顆粒便開始被氣流帶出。這時的空床流速稱為終端速度或帶出速度 ut,Umf 和 ut 值決定于顆粒和流體的性質,它們是一般鼓泡流化床操作的上、下限。

 

7.png

 

氣固流化由于其較高的物理混合率和床層翻轉頻率從而具有較高的接觸效率。快速的混合還有助于創造一個對流渦旋,以保持等溫的條件,防止局部過熱。流化床反應器 (FBR) 除傳熱系數高外,傳質速率也高。ALD 前驅體的表面吸附是一個快速的過程,其速率限制步驟是由前驅體分子找到并與表面成核位置反應的概率決定的。由于氣體擴散路徑的增加,對于軟團聚或黏合程度較高的粉末,這一過程將比平面 ALD 需要更長的時間。高顆粒循環頻率的流化床系統可以促進顆粒碰撞,避免未反應的前驅分子逃逸。

 

12.png

流化床 ALD 包覆各種類型的粉末

 

而為了實現更大的粉末處理量,單批次的流化床工藝一次性最多只能達到公斤級處理量。ALD 反應需要大量的時間,而反應腔可容納的粉末量有限。

 

13.png

由 ALD Nanosolutions 設計的 5kg 級流化床 ALD 反應系統,位于美國 NERL 實驗室

 

為了有效提升流化床的吞吐量,采用空間 ALD 的方法可有效提升處理效率。常規的 ALD 工藝基本是粉末固定,前驅體不斷通入流出。而空間 ALD 則讓粉末不斷運動,在多級腔室中進行不同的半反應。根據實驗級 ALD 的工藝,通過將多個流化床反應器連接在一起,可以實現設定周期的 ALD 反應,每個腔室進行不同的半反應,而粉末可從第一個腔室不斷轉移到新的腔室完成反應。當腔室體積足夠大,即可實現百公斤級甚至噸級的連續批次粉末處理。

 

14.png

多級流化床 ALD 系統

 

2. 旋轉床系統

 

當 ALD 表面反應具有較低的反應粘著系數時,反應物在流化床反應器中的停留時間可能太短而無法達到較高的前驅體利用效率。為了解決這些挑戰,Alan Weimmer 團隊開發了一種新型旋轉反應器,以實現在靜態 ALD 前驅體擴散期間穩定的顆粒攪拌。在這種新型反應器中,真空室中放置了一個帶有多孔金屬壁的圓筒。通過磁耦合旋轉饋通裝置旋轉多孔圓筒圓筒,從而獲得小于標準重力的離心力,粒子被連續的粒子“雪崩"效應所攪動。此外,惰性 N2 氣體脈沖有助于將顆粒從多孔壁上移出,并提供了一種有效的方法來清除顆粒床上的反應物和產物。

 

15.png

顆粒在離心力,氣流作用以及重力的作用下實現旋轉流化

 

對于需要更長前驅體駐留時間的反應或前驅體擴散效率較高的反應,旋轉式的反應腔提供了一種更為簡便的粉末 ALD 方式以及更高效的前驅體利用。而在工業級粉末 ALD 包覆時,粉末旋轉床可以節約更多的空間,進行單批次更大吞吐量的粉末處理。

 

17.png

利用旋轉床實現的顆粒包覆

 

3. 振動床

 

除了流化床以及旋轉床,振動也是實現粉末分散的一種良好方式。在實驗級反應器中,常把振動與其它兩種方式進行結合。而振動床最大的優勢在于其連續化生產以及高通量粉末處理的能力。結合空間 ALD 技術,連續振動空間顆粒 ALD 反應器利用線性振動將顆粒輸送到前驅體氣體的交替區域。在高通量粉末處理工藝中,實現多個循環 ALD 需要將多個反應器串聯,這將導致一較大的系統占地面積和成本。相比之下,連續振動的空間顆粒 ALD,顆粒通過定向振動通過前驅體氣體的交替區域流動,可以在保持低成本的同時實現粉末的高通量處理。振動導致密集顆粒區域的攪動,有助于打破堵塞,防止顆粒團聚。床層攪拌也促進了氣-顆粒和顆粒-顆粒的有效混合。在連續振動的空間粒子 ALD 反應器中,線性振動以中頻、低振幅振蕩的方式輸送粒子通過交替氣區。這種振動床比流化床更容易實現較多反應周期的 ALD 工藝,且可隨時調整反應空間的長度,甚至可以達到每年千噸級的粉末處理量。

 

18.png

Alan Weimmer 組設計的連續式振動床

 

鍛造未來,從一個原子層開始

 

從十多年前飽受質疑到如今被學術界接受,PALD 技術已處在工業應用的前夜,對這一切 Alan Weimmer 教授并不吃驚,“即使在學術界獲取資金很困難,我的興趣一直是嘗試并成為該領域的第一人。打破質疑很重要,只要我認為其具備科學可行性,我就會堅定不移進行下去“。正是在這樣的信念下,Alan 與 Steve 教授二人開創了一種全新的沉積技術子類,而由他們的學生創辦的公司 Forge Nano,正在把這一技術推廣至工業界。“在大規模的 PALD 技術加持下,納米級包覆的成本已經可以被控制在企業可以接受的水平,我們也很希望在不久的將來這一技術能被工業界廣泛應用。" Forge Nano 執行官 Paul 如是說。

 

19.png

研究人員正在調試 Rotary ALD 系統

 

參考文獻

 

[1] King DM, Spencer JA, Liang X, Hakim LF, Weimer AW (2007) Atomic layer deposition on particles using a fluidized bed reactor with in situ mass spectrometry. Surf Coat Technol201(22–23):9163–9171
[2] Wank J, Buechler K, Hakim L, George S, Weimer A (2004a) Coating fine iron particles with an oxidation-resistant gamma alumina nanolayer using ALD in a fluidized bed reactor. In: Fluidization XI—present and future of fluidization engineer-ing. ECI Intl, Brooklyn, pp 603–610
[3] McCormick J A, Cloutier B L, Weimer A W, et al. Rotary reactor for atomic layer deposition on large quantities of nanoparticles[J]. Journal of Vacuum Science & Technology A: Vacuum, Surfaces, and Films, 2007, 25(1): 67-74.
[4] Al Weimer: A Professor Worth Duplicating
[5] Hartig J, Howard H C, Stelmach T J, et al. DEM modeling of fine powder convection in a continuous vibrating bed reactor[J]. Powder Technology, 2021, 386: 209-220.

傳真:

郵箱:info@phenom-china.com

地址:上海市閔行區虹橋鎮申濱路 88 號上海虹橋麗寶廣場 T5,705 室

版權所有 © 2018 復納科學儀器(上海)有限公司   備案號:滬ICP備12015467號-2  管理登陸  技術支持:化工儀器網  GoogleSitemap

高h视频在线观看| 欧美日韩美少妇| 精品久久久在线观看| 欧美丝袜丝交足nylons| 亚洲第一黄色网| 久久视频在线直播| 国产va免费精品高清在线观看| 亚洲一区二区三区视频| 日韩电影在线播放| wwwxxx黄色片| 九色91porny| 五月天丁香激情| wwwxxxx国产| www天堂网| 日本美女在线中文版| 91福利精品在线观看| 噜噜噜天天躁狠狠躁夜夜精品| 欧美激情精品久久久六区热门| 久久精品国产成人一区二区三区| 国产日韩欧美一区二区三区综合| 在线观看日韩毛片| 俺也去精品视频在线观看| 91九色国产在线| 久久综合色视频| 日韩一卡二卡在线观看| 午夜精品一二三区| 91在线精品| 九色porny丨国产首页在线| 久久成人av| 国产成人无遮挡在线视频| 亚洲v中文字幕| 国产一区二区三区在线视频| 成人黄色av网站| 黄色影院一级片| 精品国产乱码久久久久久鸭王1| 秋霞视频一区二区| 中文字幕视频在线免费| 国产精品99久久免费| 久久国产精品久久w女人spa| 中文字幕一区二区在线观看| 久久久精品日韩欧美| 亚洲成人生活片| 欧美女人交a| 亚洲国产视频在线观看| 成人h视频在线观看播放| 91亚洲va在线va天堂va国 | 国产精品视频黄色| 加勒比婷婷色综合久久| 一本色道久久综合狠狠躁篇的优点| 一区二区三区视频在线看| 亚洲人成网站在线播| 99国产视频| 秋霞午夜鲁丝一区二区| 中文字幕乱码视频| 国产美女视频黄a视频免费| 成人影院在线免费观看| 久久青草久久| 色婷婷综合久色| 视频一区二区中文字幕| 影音先锋亚洲电影| www.99av.com| 韩国欧美国产一区| 三级视频在线| 国产一级二级毛片| 国产在线视频一区| 久久综合久久综合久久| 免费一级网站| 熟妇熟女乱妇乱女网站| 国产一区激情在线| 天堂网在线观看视频| 欧美综合在线第二页| 久久久久观看| 久久久久久视频| 欧美在线视频观看| 中文字幕中文字幕在线十八区 | 免费超碰在线| 成人一级片免费看| 日韩欧美在线1卡| 97人人爽人人澡人人精品| 精品影片一区二区入口| 欧美va亚洲va香蕉在线| 国产网站免费观看| 国产精品久久久久久一区二区| 蜜臀av性久久久久蜜臀aⅴ流畅| 成年人福利网站| 国产又黄又嫩又滑又白| 97国产成人精品视频| 亚洲欧洲av在线| 亚洲女娇小黑人粗硬| 蜜桃av网站| 天天舔天天操天天干| 国内精久久久久久久久久人| 视频亚洲一区二区| 天天插天天射天天干| 国产亚洲精品久久久久久牛牛 | 国产精品69久久久久水密桃| 亚洲精品97久久中文字幕| 欧美激情欧美狂野欧美精品| 欧美日韩导航| 伊人影院蕉久影院在线观看| 日韩欧美中文在线视频| 精品久久久久久中文字幕| 国产91精品入| 国产在线精品一区二区不卡| 欧美日韩在线免费观看视频| 午夜性色一区二区三区免费视频| 国产一起色一起爱| 99视频在线视频| 日韩精品欧美国产精品忘忧草 | 亚洲小说图片区| 欧洲熟妇精品视频| 日韩精品极品视频免费观看| 成人3d精品动漫精品一二三| 精品成人免费自拍视频| 亚洲 自拍 另类小说综合图区| 精品国产一区二区三区四区四| 奇米狠狠一区二区三区| 99re99| 国产成人永久免费视频| 色婷婷激情久久| 国产精品日韩精品在线播放| 免费看的黄网站| 国产在线观看第一页| wwwww在线观看| 久久夜色精品国产欧美乱| 天堂在线第六区| 国产精品theporn动漫| 欧美黑人xxxx| 国产乱码精品| avtt亚洲| 人人妻人人澡人人爽人人欧美一区 | 欧美18免费视频| 亚洲人体影院| 啊啊啊射了视频网站| 夜夜操com| 精品免费囯产一区二区三区| 精品一区二区三区日本| 亚洲精品自在久久| 外国成人免费视频| 欧美成人a交片免费看| 九一免费看片| 中文字幕在线观看视频一区| 中文字幕欧美视频| 日韩成人中文电影| 亚洲毛片播放| 日本高清成人vr专区| 国产又爽又黄免费软件| 国产极品美女在线| 日韩av加勒比| www.成人av.com| 欧美成人乱码一区二区三区| 成人午夜激情视频| 成人激情开心网| 69日本xxxxxxxxx49| 97中文字幕在线观看| 国产综合第一页| 韩国一区二区电影| 欧美日韩国产在线观看| 色狠狠一区二区| 欧美高清视频在线高清观看mv色露露十八| 精品视频免费看| 亚洲精品在线免费播放| 亚洲激情在线激情| 成人一区二区三区| 丝袜美腿亚洲综合| 精品国产18久久久久久二百| 在线视频二区| 九九九热视频| 亚洲人视频在线观看| 国产寡妇亲子伦一区二区三区四区| 成人在线免费在线观看| 国产福利片一区二区| 亚洲永久在线观看| 欧美视频中文字幕| 国产精品1024| 色综合五月天| 韩国精品视频在线观看| 在线免费观看污| 羞羞的视频在线看| 九色视频网站| 午夜激情福利视频| 蜜桃视频在线观看www| 青青青在线免费观看| 欧美乱偷一区二区三区在线| 欧美午夜电影一区| 亚洲大片在线观看| 午夜视频在线观看一区二区 | 欧美jizz18hd性欧美| 日本在线观看网站| 成人在线黄色| 欧美成人久久| 国产精品va| 国产偷国产偷精品高清尤物| 婷婷久久综合九色综合绿巨人| 久久综合丝袜日本网| 丁香激情综合五月| 激情久久久久久久久久久久久久久久| 91蜜桃臀久久一区二区| 麻豆一区二区麻豆免费观看| 女同一区二区三区|