欧美人在线观看_性欧美xxx极品另类_亚洲欧洲中文字幕_中文字幕欧美日韩在线_欧美黑人猛交_国产精品黄色影片导航在线观看_国产夫妻在线播放_深夜福利成人

復納科學儀器(上海)有限公司
技術文章
您現在所在位置:首頁 > 技術中心 > 磷酸鋁 ALD 破解高鎳鋰電正極材料結構疲勞難題

磷酸鋁 ALD 破解高鎳鋰電正極材料結構疲勞難題

 更新時間:2025-05-09 點擊量:1400

在新能源汽車和儲能系統領域,鋰離子電池正極材料的性能突破始終是行業關注焦點。近期,英國華威大學及法拉第研究所發表于《PRX Energy》的一項突破性研究成果揭示了 PALD(粉末原子層沉積)技術在抑制高鎳正極材料結構疲勞方面的潛力,為高電壓鋰電體系的商業化應用鋪平了道路。該工作使用的 ALD 包覆工藝由 Forge Nano 提供。

 

Part.1  高鎳正極的"阿喀琉斯之踵"

 

鎳含量超過60%的層狀氧化物正極(如LiNi0.8Mn0.1Co0.1O2,簡稱 NMC811)因其高比容量和能量密度成為下一代鋰電的核心材料。然而,當工作電壓提升至 4.2V 以上時,表面氧流失引發的結構坍塌成為制約其循環穩定性的關鍵瓶頸。

 

在實現高容量所需的高電壓下操作時(超過 4.2 V),這些高鎳正極容易通過晶間開裂和表面重構而發生化學機械降解。前者是由于在循環過程中產生大量晶體應變,導致開裂;后者是脫鋰引起的表面不穩定性的結果,這種不穩定性源于表面 O 損耗,導致表面結構從層狀轉變為更致密的立方尖晶石或巖鹽結構。

 

因此,有必要實施材料改性策略,例如使用保護性表面涂層,以延長這些正極的電化學循環壽命。Particle ALD 是在高比表面積粉體材料表面進行ALD 涂層工藝的技術,近年來隨著 Forge Nano推出的產線兼容設備而備受關注,利用該技術可對不穩定的高鎳三元材料進行表面改性,從而達到原子級水平的界面調控。

 

 

圖1. Forge Nano 推出的從工藝開發到小試,中試及量產級粉末ALD 設備方案。

 

Part.2  研究方法與實驗設計

 

材料與電池制備

 

  • 正極材料:Forge Nano 公司提供的 ALD 磷酸鋁涂層 NMC811(ALD-NMC811)與未涂層NMC811(UC-NMC811)。

  • 電池組裝:工業級中試線軟包電池(面積容量3.4 mAh/cm2),采用石墨負極,電解液為 1M LiPF?(EC:EMC=3:7+1% VC)。

 

實驗方法

 

  • 電化學測試:在 3.0–4.4V 電壓范圍內進行 100 次非對稱循環(0.5C 充電,1C 放電),并分析容量衰減、電壓滯后及阻抗增長。

  • 原位 X 射線衍射:監測循環過程中 NMC811 晶格參數(a、c)演變及結構疲勞特征。

    003峰:對應層狀結構沿c軸方向的晶格參數(層間距),對脫鋰程度敏感。

    101峰:反映a-b面晶格參數,表征面內收縮/膨脹。

  • 電化學阻抗譜:評估表面層電阻(SEI)和電荷轉移電阻。

 

Part.3  主要研究結果

 

ALD 涂層對電化學性能的影響

 

01容量保持率

 

ALD-NMC811電池在100次循環后容量衰減(C/10:~10%;1C:~13%)顯著低于 UC-NMC811 (C/10:~13%;1C:~31%),表明 ALD 涂層在高倍率下更有效抑制容量損失。

 

 

圖2.兩塊UC-NMC811(未包覆)電池和兩塊ALD-NMC811電池的平均(a)放電容量和(b)歸一化放電容量。(c) UC-NMC811和(d) ALD-NMC811電池選定循環中,恒壓保持(4.4 V,截止閾值 C/20)的電流隨時間變化曲線。

 

02  電壓滯后

 

微分容量曲線顯示,UC-NMC811 在循環后氧化/還原峰位移更顯著,ALD 涂層降低了過電位積累(圖 3a)。

 

03  阻抗分析

 

ALD-NMC811 的總阻抗(SEI 電阻+電荷轉移電阻)較 UC-NMC811 降低約 70 %(1.06Ω v.s 0.32Ω),證實涂層抑制了巖鹽相形成。

 

 

圖3(a) UC-NMC811 和(b) ALD-NMC811 電池在循環壽命測試中(FDC) 和(LDC) 之間的差分容量 d Q /d V與電壓曲線比較。(c)在不同充電電壓下測得的老化 UC-NMC811 和 ALD-NMC811 電池 EIS 數據的擬合圖。3.5、3.8 和 4.0 V 分別對應于約 20%、50% 和 80% 的充電狀態。Zr 和Zi 分別表示實部阻抗和虛部阻抗。

 

結構演化與疲勞抑制機制

 

01  原位 XRD 分析

 

晶格參數演化:ALD-NMC811在充電末端的晶格參數c塌縮更顯著,表明更高的脫鋰均勻性[圖4]。由于晶格參數c的崩塌程度反映了本體的脫鋰程度,因此ALD-NMC811 晶胞中c的下降幅度越大,表明脫鋰程度越高,因此充電容量也就越高。

 

圖4 (a) UC-NMC811 和 ALD-NMC811 電池的電壓隨時間變化曲線,(c) NMC811晶格參數a(正方形)和c(三角形)對應的相對變化。(b)兩個電池的電壓與時間曲線;(d) NMC811 電池體積變化。

 

圖5 UC-NMC811 和 (b) ALD-NMC811 袋式電池的 XRD 熱圖(顏色深淺表示不同晶面衍射峰的強度變化)和相應的電壓分布圖。

 

結構疲勞特征:UC-NMC811 在 4.4V 恒壓階段出現 003峰分裂(向低角度偏移,圖5),而ALD-NMC811 無明顯分裂,表明涂層抑制了體相結構疲勞[圖6b, 6e]。6(a)和6(d)表明,在老化的UC-NMC811電池中,需要更大的電流來維持 4.4V 的電壓。ALD 涂層正極在循環過程中的結構變化明顯小于未涂層正極,表明涂層能有效抑制結構疲勞。此外,ALD 涂層正極的電壓曲線更加穩定,表明其循環穩定性更好(圖5)。

 

02  石墨相變化

 

ALD-NMC811 在恒壓階段生成的 LiC? 相較少,反映其正極脫鋰動力學更優[圖6c, 6f]。兩種電池的 003 反射演變存在顯著差異。在 UC-NMC811 電池中,在充電步驟結束時,003 反射表現出強烈的不對稱性,在較低的散射角處出現寬肩特征,如圖所示。因此,UC-NMC811 正極存在明顯的疲勞。在 CV 過程中,隨著脫鋰的持續進行,該特征的強度降低,003 反射向更高的散射角移動,表明它確實與脫鋰有關,進而與疲勞有關。在 ALD-NMC811 電池中,這種 CV 過程中的偏移明顯較小;該電池在充電步驟中的脫鋰更加均勻,因此,更容易使該正極中的脫鋰狀態均質化。

 

圖6所示 (a)、(d)電流與時間曲線,(b)、(e)對應的NMC811 003峰和(c)、(f) 4.4 V CV步驟中(a) - (c) UC-NMC811和(d) - (f) ALD-NMC811電池的石墨Li化及峰演變。

 

關鍵機制

 

  • 表面保護:ALD 涂層減少氧損失,抑制巖鹽相重構,從而降低表面電阻。

  • 體相調控:涂層通過均勻化鋰離子分布,緩解脫鋰過程中的晶格應變,抑制疲勞相成核。

 

 

Part.4  討論與創新點

 

創新性

 

  • 體相-表面協同效應:通過原位 XRD 揭示ALD 涂層不僅保護表面,還通過改善鋰離子擴散動力學抑制體相結構疲勞。

  • 工業可擴展性:采用流化床 ALD 技術(如 Forge Nano Prometheus 系統)實現正極顆粒均勻包覆,適用于大規模生產。

 

Part.5結論與展望

 

通過電化學和原位X射線衍射研究 UC-NMC811-石墨和 ALD-NMC811-石墨全電池,結果表明,粉末原子層沉積(PALD)技術涂層是抑制這些正極在長期電化學循環中發生結構疲勞的有效方法。

 

ALD 涂層是通過在多晶 NMC811 顆粒上直接沉積納米級均勻的磷酸鋁層實現的。在經過 100 次恒流充放電循環(3-4.4 V)和在工業3.4 mA h/cm2的試產線袋式全電池(石墨負極)中大約 1 年的日歷老化后,發現 ALD 涂層正極電池的容量衰減明顯較小,阻抗增長也較慢。它們表現出結構的穩健性,并顯示出相對更好的鋰離子動力學指標。

 

對老化袋式電池的原位 XRD 研究表明,與 ALD 涂層正極相比,未涂層正極在充電末期表現出更高的結構疲勞程度。這在恒壓保持步驟期間通過 NMC811 和石墨相在充電末期的演變得到證明。因此,正極顆粒的 ALD 涂層是一種可工業擴展的方法,用于抑制富鎳層狀氧化物正極中的體相結構疲勞。這項工作表明,ALD 在抑制此類正極在電壓表面降解方面的有益效果同樣轉化為長期循環過程中的體相穩定性。

 

型號推薦Forge Nano 粉末原子層沉積系統

 

 

PROMETHEUS XL 10(20)L流化床ALD 系統

Prometheus XL 流化床原子層沉積系統單次處理量達 1-20L(依粉末密度可達 10kg 以上),助力客戶快速實現從實驗室到工業化的工藝放大。大容量流化床反應器,結合振動與高剪切射流技術,解決粉末團聚難題,實現超均勻包覆。

 

 

PROMETHEUS 流化床ALD系統

利用 Prometheus 流化床原子層沉積系統可開發探索復雜的高比表面積粉末涂層,實現克級到公斤級粉末材料的界面涂層生長。批次處理能力提升至企業驗證需求的水平,可加快成果轉化速度。適合兼顧科學研究以及成果轉化的工藝開發需求,實現與企業小試要求的無縫銜接。

 

 

PANDORA 多功能ALD系統

Pandora 多功能原子層沉積系統使用操作簡單,兼容性強,適合在前期快速開展粉末包覆和平面樣品薄膜沉積的研究。同時,該系統能真正做到兼顧多種不同樣品的需求,可處理各種復雜樣品并做到的 ALD 包覆。

 

了解更多原子層沉積技術以及 Forge Nano 產品詳情、應用案例與代包覆服務,

 

 

 

原文文獻

【1】Pandey G C, Ans M, Capener M J, et al. Can Atomic Layer Deposition of Surface Coatings Suppress Structural Fatigue in Ni-Rich Lithium-Ion Battery Cathodes?[J]. PRX Energy, 2025, 4(1): 013009.



傳真:

郵箱:info@phenom-china.com

地址:上海市閔行區虹橋鎮申濱路 88 號上海虹橋麗寶廣場 T5,705 室

版權所有 © 2018 復納科學儀器(上海)有限公司   備案號:滬ICP備12015467號-2  管理登陸  技術支持:化工儀器網  GoogleSitemap

91黄色小视频| 国产精品久久91| 三叶草欧洲码在线| 91精品91| 亚洲av无码久久精品色欲| 日av在线播放| 欧美日韩一区二区在线| 天天天天天天天天操| 精品少妇一区二区三区在线视频 | 国产成人一区二区三区小说| 欧美18 19xxx| 亚洲午夜未满十八勿入免费观看全集| 亚洲欧美va天堂人熟伦 | 精品入口麻豆传煤| 91久久国产综合久久蜜月精品| 亚洲欧美日韩国产综合精品二区 | 在线日韩欧美视频| 视频免费一区| 91香蕉亚洲精品| 欧美一区=区三区| 日本特级黄色大片| 亚洲欧洲一区二区天堂久久| wwwxx日本| 欧美精品久久久久久| 成年人三级黄色片| 国产麻豆视频精品| 国产黄色小视频在线观看| 国产成人精品三级麻豆| 欧美日韩在线国产| 日韩欧美在线视频| 小早川怜子久久精品中文字幕| 中文字幕不卡三区| 日韩中文字幕观看| 久久在线视频在线| 高清在线一区| 欧美激情视频二区| 国产日韩欧美精品一区| aaa人片在线| 久久―日本道色综合久久| 亚洲国产精品二区| 777午夜精品免费视频| 天堂在线资源网| 中文字幕在线视频一区| 国产乱淫av免费| 青草青草久热精品视频在线网站 | 久久精品aaaaaa毛片| 国产在线高潮| 午夜精品中文字幕| 精品国产乱码久久久久久虫虫漫画 | 国产精品亚洲第一区| 欧美综合二区| 少妇精品放荡导航| 99久热在线精品视频| 99re这里只有精品6| 婷婷开心激情网| 久久国产精品电影| 手机在线观看av| 国产极品一区二区| 日韩一区二区欧美| 三年片免费观看大全| 亚洲欧美制服综合另类| 亚洲国产精华液| 成人精品福利视频| 成人av动漫| 国产日韩欧美久久| 欧美日韩一二区| 91精品美女| 欧美牲交a欧美牲交aⅴ免费下载| 成人精品视频一区| 翔田千里一区| 国内偷拍精品视频| 欧美在线观看网站| ww久久中文字幕| 污网站在线免费看| 国产jk精品白丝av在线观看| 亚洲激情综合网| 国产成人精品实拍在线| 久久综合毛片| 午夜精品久久| 国产高清av| 亚洲一区高清| 欧美一性一交| 国产伦精品一区三区精东| 中文字幕的久久| 成人免费在线观看网站| 国产精品永久入口久久久| 韩日在线一区| 黄色网战入口| 欧美视频国产视频| 欧美日韩黄视频| 欧美成a人片在线观看久| 国产免费福利视频| 久久久综合香蕉尹人综合网| 在线日韩av片| 国产成人精品一区二| 久久精品九色| 日本三级电影免费观看| 亚洲成人网在线播放| 一区二区三区视频在线 | 污污动漫在线观看| 欧美日韩国产一级二级| 香蕉综合视频| 爽爽影院免费观看视频| 韩剧1988免费观看全集| 99精品在线观看| 午夜成人免费影院| 91色在线视频| 国产激情91久久精品导航| 99热com| 91视频福利网| 久久久精品视频在线观看| 午夜精品一区二区三区国产| 精品推荐国产麻豆剧传媒| 91午夜在线观看| 欧美成人合集magnet| 欧美视频在线一区二区三区| aaa欧美日韩| 中文无码久久精品| 国产高清亚洲| a级片国产精品自在拍在线播放| 999久久久免费精品国产牛牛 | 国产精品丝袜一区| 98在线视频| 天堂网av手机版| 日本免费一区二区三区| 欧美视频一区二区三区四区| 亚洲欧美久久久| www.com在线观看| 宅男av一区二区三区| 91国内精品野花午夜精品| 亚洲国内欧美| 久久精品黄色| 天堂网站www天堂资源在线| 亚洲精品中文字幕乱码三区不卡| 日韩成人激情视频| 蜜桃av一区二区三区电影| 日韩电影免费观| 日本少妇在线观看| 国产www精品| 日韩欧美国产高清91| 国产精品美女| 欧美高清你懂的| 国产日韩精品在线看| 美女免费黄视频网站| 9i看片成人免费看片| 新91视频在线观看| 99视频网站| 欧美高清性hdvideosex| 国产精品videossex久久发布| 黄页网站在线| 成人免费乱码大片a毛片软件| 五月天综合激情网| 激情深爱综合网| 亚洲女成人图区| 国产91综合网| 久久精品国产大片免费观看| 1024在线看片你懂得| 国产欧美日韩精品综合| 亚洲一区二区福利视频| 国产91九色视频| 图片区小说区国产精品视频| 国产精品一区免费视频| 丝袜综合欧美| 在线观看日本视频| 国产精品久久免费观看| 欧美爱爱视频免费看| 国产精品久久久久久久av大片| 69影院欧美专区视频| 91亚洲人电影| 午夜精品美女久久久久av福利| 色大师av一区二区三区| 久久精品国产一区二区三区日韩| 91丨九色丨国产| 成人在线免费观看视视频| 久久精品这里热有精品| 欧美日韩高清影院| 99精品欧美一区二区三区小说| 亚洲精品国产偷自在线观看| 日韩av三区| 国产精品1区在线| 福利片在线一区二区| 中文不卡1区2区3区| 天天草夜夜骑| 不卡视频在线播放| 黑人一级大毛片| 久久精品—区二区三区舞蹈| www.日本高清| 荫蒂被男人添免费视频| 奇米影视四色在线| 国产伦精品一区| 欧美日韩成人在线观看| 久久精品最新地址| 欧美精品免费在线| 国产视频在线观看一区二区| 中文视频一区| 草草视频在线一区二区| 美女av一区| 国产精品一国产精品| 重囗味另类老妇506070| 国产成人啪免费观看软件|